Evaluated Crop Evapotranspiration over a Region of Irrigated Orchards with the Improved ACASA–WRF Model Citation

نویسندگان

  • Falk
  • Matthias
  • R. D. Pyles
  • S. L. Ustin
  • K. T. Paw
  • L. Xu
  • M. L. Whiting
  • B. L. Sanden
  • MATTHIAS FALK
  • L. XU
  • M. L. WHITING
  • B. L. SANDEN
  • P. H. BROWN
چکیده

Among the uncertain consequences of climate change on agriculture are changes in timing and quantity of precipitation together with predicted higher temperatures and changes in length of growing season. The understanding of how these uncertainties will affect water use in semiarid irrigated agricultural regions depends on accurate simulations of the terrestrial water cycle and, especially, evapotranspiration. The authors test the hypothesis that the vertical canopy structure, coupled with horizontal variation in this vertical structure, which is associated with ecosystem type, has a strong impact on landscape evapotranspiration. The practical result of this hypothesis, if true, is validation that coupling the Advanced Canopy– Atmosphere–Soil Algorithm (ACASA) and the Weather Research and Forecasting (WRF) models provides a method for increased accuracy of regional evapotranspiration estimates. ACASA–WRF was used to simulate regional evapotranspiration from irrigated almond orchards over an entire growing season. The ACASA model handles all surface and vegetation interactions within WRF. ACASA is a multilayer soil–vegetation–atmosphere transfer model that calculates energy fluxes, including evapotranspiration, within the atmospheric surface layer. The model output was evaluated against independent evapotranspiration estimates based on eddy covariance. Results indicate the model accurately predicts evapotranspiration at the tower site while producing consistent regional maps of evapotranspiration (900–1100mm) over a large area (1600km) at high spatial resolution (Dx 5 0.5km). Modeled results were within observational uncertainties for hourly, daily, and seasonal estimates. These results further show the robustness of ACASA’s ability to simulate surface exchange processes accurately in a complex numerical atmospheric forecast model such as WRF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

*Reprinted from Coupling the high-complexity land surface model ACASA to the mesoscale model WRF*

In this study, the Weather Research and Forecasting (WRF) model is coupled with the Advanced Canopy– Atmosphere–Soil Algorithm (ACASA), a high-complexity land surface model. Although WRF is a state-of-the-art regional atmospheric model with high spatial and temporal resolutions, the land surface schemes available in WRF, such as the popular NOAH model, are simple and lack the capability of repr...

متن کامل

Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions

[1] The utility of a thermal image sharpening algorithm (TsHARP) in providing fine resolution land surface temperature data to a Two-Source-Model for mapping evapotranspiration (ET) was examined over two agricultural regions in the U.S. One site is in a rainfed corn and soybean production region in central Iowa. The other lies within the Texas High Plains, an irrigated agricultural area. It is ...

متن کامل

Parametrizing Simple Model between Yield and Evapotranspiration for Amaranthus cruentus under Drip and Sprinkler Irrigations

Amaranthus cruentus, an annual vegetable crop, is known to be highly productive under rain-fed conditions and during the dry season when supplied with water. However, for good water management, there is need to accurately quantify the water consumed by the crop. This paper investigates the water use and biomass yield of differentially irrigated Amaranthus cruentus at different developmental sta...

متن کامل

Estimating Evapotranspiration of an Apple Orchard Using a Remote Sensing-Based Soil Water Balance

The main goal of this research was to estimate the actual evapotranspiration (ETc) of a drip-irrigated apple orchard located in the semi-arid region of Talca Valley (Chile) using a remote sensing-based soil water balance model. The methodology to estimate ETc is a modified version of the Food and Agriculture Organization of the United Nations (FAO) dual crop coefficient approach, in which the b...

متن کامل

Determining Regional Actual Evapotranspiration of Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil) Using Remote Sensing and Penman-Monteith Equation

To achieve sustainable development and to ensure water availability in hydrological basins, water managers need tools to determine the actual evapotranspiration (ET) on a large scale. Field energy balances from irrigated and natural ecosystems together with a net of agro-meteorological stations were used to develop two models for ET quantification at basin scale, based on the Penman-Monteith eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014